organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mustafa Odabaşoğlu^a* and Orhan Büyükgüngör^b

^aDepartment of Chemistry, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey, and ^bDepartment of Physics, Faculty of Arts & Science, Ondokuz Mayıs University, TR-55139 Kurupelit Samsun, Turkey

Correspondence e-mail: muodabas@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.002 Å R factor = 0.031 wR factor = 0.076 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography

All rights reserved

3,6-Dioxaoctane-1,8-diammonium oxalate

The title compound, $C_6H_{18}N_2O_2^{2+}\cdot C_2O_4^{2-}$, crystallizes with one half-cation and one half-anion in the asymmetric unit. It contains cyclic N-H···O hydrogen-bonded rings involving 3,6-dioxaoctane-1,8-diammonium and oxalate ions, forming a three-dimensional network.

Comment

Analysis of intermolecular interactions in crystalline systems is very important in supramolecular chemistry (Braga *et al.*, 2002). These interactions influence the crystal packing and can provide insight into the collective properties of materials as well as leading to the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). We have been interested in supramolecular hydrogen-bonded systems formed by organic amines and carboxylic acids (Odabaşoğlu, Büyükgüngör & Lönnecke, 2003; Odabaşoğlu, Büyükgüngör, Turgut *et al.*,2003; Odabaşoğlu & Büyükgüngör, 200a,*b*). The structure presented here, (I), is another example of this type of supramolecular assembly (Fig. 1).

In (I), the 3,6-dioxaoctane-1,8-diammonium ions are linked to the oxalate ions through $N-H\cdots O$ hydrogen bonds, resulting in the formation of spirocyclic $R_2^2(5)$ and $R_2^2(4)$ hydrogen-bonded rings (Fig. 2 and Table 2). The asymmetric unit contains half of each ion.

 $N-H\cdots O$ hydrogen bonds found in amine carboxylates with essentially linear hydrogen bonds exhibit an average $N\cdots O$ bond distance of 2.811 Å and an average $N-H\cdots O$ angle of 158.2° (Vaidhyanathan *et al.*, 2002). Compound (I) has a slightly longer $N\cdots O$ average bond distance of 2.829 (12) Å and a slightly smaller $N-H\cdots O$ average bond angle of 149.9 (12)°. In (I), the C1-N1 bond exhibits a normal Csp^3-Nsp^3 single-bond length (Vaidhyanathan *et al.*, 2002; Odabaşoğlu & Büyükgüngör, 2006), while the C1-C2 single bond is shorter than normal. This shortening can be attributed to the positive inductive effect of the O and N atoms.

Experimental

The title compound was prepared by mixing 2-[2-(2-aminoethoxy)ethoxy]ethanamine and oxalic acid in a 1:1 molar ratio in water at 353 K. Crystals of (I) were obtained by slow evaporation of the solvent (m.p. 494–495 K). Received 21 February 2006 Accepted 16 March 2006

Crystal data

 $\begin{array}{l} C_{6}H_{18}N_{2}O_{2}^{2+}\cdot C_{2}O_{4}^{2-}\\ M_{r}=238.24\\ \text{Monoclinic, }P_{2_{1}}/c\\ a=7.5119 \ (7) \ \text{\AA}\\ b=7.7072 \ (5) \ \text{\AA}\\ c=10.879 \ (1) \ \text{\AA}\\ \beta=121.494 \ (6)^{\circ}\\ V=537.07 \ (9) \ \text{\AA}^{3}\\ Z=2 \end{array}$

Data collection

Stoe IPDS 2 diffractometer ω scans Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) $T_{min} = 0.961, T_{max} = 0.983$ 7458 measured reflections 1058 independent reflections

Refinement

. .

$w = 1/[\sigma^2(F_o^2) + (0.0231P)^2]$ Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.076$ + 0.1294P] where $P = (F_0^2 + 2F_c^2)/3$ S = 1.08 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$ 1058 reflections $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ 86 parameters H atoms treated by a mixture of Extinction correction: SHELXL97 independent and constrained Extinction coefficient: 0.093 (6) refinement

Table T				
Selected	geometric	parameters	(Å,	°).

O3-C4-C4 ⁱⁱ	117.21 (11)		
O3-C4-O2	126.71 (9)	O2-C4-C4 ⁱⁱ	116.08 (11)
C3-O1	1.4241 (14)		
C2-O1	1.4247 (13)	C4-O2	1.2541 (13)
C1-C2	1.5047 (15)	C4-O3	1.2434 (13)
C1-N1	1.4817 (15)	C3-C3 ⁱ	1.521 (2)

 $D_x = 1.473 \text{ Mg m}^{-3}$

Cell parameters from 7458

Rounded prism, colorless

952 reflections with $I > 2\sigma(I)$

 $0.35 \times 0.28 \times 0.17 \text{ mm}$

Mo $K\alpha$ radiation

reflections

 $\theta = 3.2-28.0^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$

T = 100 K

 $\begin{aligned} R_{\rm int} &= 0.105\\ \theta_{\rm max} &= 26.0^\circ \end{aligned}$

 $h = -9 \rightarrow 9$

 $k = -9 \rightarrow 9$

 $l = -13 \rightarrow 13$

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z.

Table 2

		0	
Hydrogen-bond	geometry	(A	°)
ilyalogen oona	geometry	(11,	<i>.</i>

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N1-H11A···O2 ⁱⁱⁱ	0.913 (16)	1.904 (15)	2.7614 (12)	155.6 (12)
N1-H11 A ···O3 ^{iv}	0.913 (16)	2.352 (14)	2.9866 (12)	126.5 (10)
$N1 - H11B \cdot \cdot \cdot O3^{v}$	0.901 (15)	1.976 (15)	2.8138 (12)	154.0 (12)
$N1-H11C \cdot \cdot \cdot O2^{vi}$	0.909 (16)	1.869 (16)	2.7530 (12)	163.6 (14)
Symmetry codes: (iii)	-x, -y + 1, -z	x + 1; (iv) x, y, z	x + 1; (v) -x, y +	$\frac{1}{2}, -z + \frac{1}{2};$ (vi)

 $x, -y + \frac{1}{2}, z + \frac{1}{2}$

All C-bound H atoms were refined using the riding-model approximation, with C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. N-bound H atoms were located in a Fourier difference map and refined freely.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

Figure 1

A view of the title molecule with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes are as in Table 1.

Figure 2

A packing diagram of the title compound, showing the hydrogen-bonding (dashed lines) scheme.

graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

- Braga, D., Maini, L. & Grepioni, F. (2002). Chem. Eur. J. 8, 1804-1812.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.
- Odabaşŏlu, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o236-o238.
- Odabaşoğlu, M. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o739-o741.
- Odabaşoğlu, M., Büyükgüngör, O. & Lönnecke, P. (2003). Acta Cryst. C59, o51–o52.
- Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karada, A., Bulak, E. & Lönnecke, P. (2003). J. Mol. Struct. 648, 133–138.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Univ. of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2002). J. Mol. Struct. 608, 123–133.